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https://www.handelsblatt.com/politik/international/weltgeschichten/peer/weltgeschichte-asien-schickt-abfall-zurueck-

nach-europa-und-amerika/24414430.html
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[1] https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland

The need to reduce greenhouse gas emissions

Million tons CO2-equivalents of Germany
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 Impacts of Resource Use on German Energy Transition
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What is a Circular Economy?

[1] Wautelet, Thibaut. (2018). Exploring the role of independent retailers in the circular economy: a case study approach.

[2] https://www.nordic-ecolabel.org/why-choose-ecolabelling/circular-economy/

Regenerative System

reduction of
► raw material input
► waste output
► emissions
► energy use

implementation of
► dfx (design for X)
► repair
► reuse
► recycling

https://www.nordic-ecolabel.org/why-choose-ecolabelling/circular-economy/
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How to close material loops? 

Waste Hierarchy
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Why do we need a Circular Economy?

EU Emission Reduction Potential Using a Circular Economy
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Baseline 2050

Steel 160 Mt/year, scrap-based 

production increases to 65%

Plastics 49  62 Mt/year production

Aluminum 12  16 Mt/year production

Cement 184 Mt/year production

Circular Economy 2050

Steel 85% scrap-based production

Plastics collection rate of 85% 

Aluminum 60% scrap-based production

Cement 30-50% unreacted cement in

demolition waste

Savings of 178 Mt CO2

Total CO2 emissions of Portugal, 
Ireland and Denmark combined

[1] European Commission, 2018. In-depth analysis in support of the commission communication com-773

Σ 563 Σ 530

Σ 352
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How to assess a Circular Economy?

Material and Substance Flow Models

9

[1] Smith et al. 2015. A substance flow analysis of phosphorus in the food production, processing and 

consumption system of the Netherlands. Nutrient Cycling in Agroecosystems 103 (1), pp. 1-13

Production
Fabrication & 
Manufacturing

Use
Waste 

Management

EnvironmentLithosphere

StockStock

Extraction 
/ Mining

New Scrap

Old Scrap

Landfilled 
Waste, 
Dissipation

Products

Landfill

Import

Export

“Material flow analysis provides a systematic assessment 
of flows and stocks (of a specific material) within a 
defined system in space and time”[1]
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How to assess a Circular Economy?

Material and Substance Flow Analysis

10

[1] Smith et al. 2015. A substance flow analysis of phosphorus in the food production, processing and 

consumption system of the Netherlands. Nutrient Cycling in Agroecosystems 103 (1), pp. 1-13
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How does a circular economy influence the German energy system?
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?
Waste
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Agenda

 Circular Economy

 Energy System Analysis

 Impacts of German Energy Transition on Resource Availability

 Impacts of Resource Use on German Energy Transition
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What are Energy System Models?

‘Energy systems models are important methods used to generate a 

range of insight and analysis on the supply and demand of energy.’ [1]

[1] S. Pfenninger, A. Hawkes and J. Keirstead: Energy systems modeling for twenty-first century energy 

challenges. Renewable and Sustainable Energy Reviews, 33, pp. 74-86. 2014.

Gas Grid
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Demand

Heat 
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Heat 
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Heat 

Pump

E-Mobility

CHP
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Example

Find and evaluate transformation strategies 

to achieve GHG-reduction

‘Holding the increase in the global average temperature to well below 2 °C above pre-

industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above 

pre-industrial levels […]’ [1] (Aim of Paris Agreement)

[1] United Nations Framework Convention on Climate Change, Paris Agreement (FCCC/CP/2015/L.9/Rev.1), § 2.1(a). 12/12/2015

[2] V. Quaschning. Sektorkopplung durch die Energiewende. Hochschule für Technik und Wirtschaft HTW Berlin. 2016
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1,5 °C Limit

Currently
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Protection
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Why do we need Energy System Models?

[2]
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Network of defined nodes

(sources, sinks, storages, transformers, hubs)

and edges (energy and mass flows).

General Approach of an Energy System Model

System of linear 

equations (LP)

 Data processing

 Objective function

 Constraints

 Visualization

 Least-cost energy 

system
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General Approach of an Energy System Model

IProcess1-Costs < Iprocess2-Costs

ICE-Costs < BEV-Costs

CoalPP-Costs < GasPP-Costs < Wind Power-Costs < PV-Costs

FossilPP-Heat-Costs < El. Heat-Costs

No CO2 Restrictions-25% CO2 Emissions-80% CO2 Emissions-100% CO2 Emissions

Industry Demand

Transport Demand

Electricity Demand

Heat Demand

EExport

CO2Emissions

Biomass

Fuel

Wind Energy

Solar Energy

Coal

EImport

Hydrogen

Methane
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Energy System Model 

ENERGY SYSTEM MODEL
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(fuel prices, population, etc.)

Basic Approach

Integrated energy system model

 Hybrid bottom-up approach

 Quadratic Programming – Cost 

Optimization

 Myopic transition analysis

 Time series aggregation

 Temporal resolution of 1 hour

 Spatial pseudo-resolution of 9 regions

Highlights

 Detailed implementation of:

 PtX technologies

 Infrastructural aspects

 Biomass allocation

 Energy efficiency measures

 Energy storage technologies

 Consideration of cost uncertainties

 Interaction with other models

‘How does the least-cost future energy system of Germany look like 

under consideration of climate goals?’
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How does the low-carbon energy transition impact resource availability?

“A shift to renewable energy will replace one 

non-renewable resource (fossil fuels) 

with another (metals and minerals)”[1]

19

[1] Vidal et al. (2013) Metals for a low-carbon society. Nature Geoscience (6)
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How does the low-carbon energy transition impact resource availability?

20

[1] Koning et al. (2018) Metal supply constraints for a low-carbon economy
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Where are the metals and minerals?

21

[1] https://www.newscientist.com/article/mg19426051-200-earths-natural-wealth-an-audit/
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Recycling in Germany – Example: Steel

23

Yearly production 2015

Energy use per ton of steel

CO2 emissions per ton of 

steel

German primary and 

secondary steel production [1]

0 500 1000 1500 2000

Recycling of non-metals

Recycling of metals

Total

Energy demand of the German recycling industry 
[2]

GWh_el GWh_fuel

Specific energy demand [2]

~150 kWh / t of recycled metal

Blast Furnace

70.4 %

30.05 Mt

1.744 t CO2

4.93 MWh

Electric Arc 
Furnace

29.6%

12.6 Mt

0.395 t CO2

1.20 MWh

Recycling can provide significant energy 
savings for a small trade-off

0.2% of industrial 
energy demand

[1] Hiebel, M.; Nühlen, J. (2016) 

[2] Arbeitsgemeinschaft Branchenenergiekonzept Recycling (2009)
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Implications

► How does steel 

production and energy 

use change?

► How much may 

recycling cost?

H2–import and steel scrap costs are 
deciders for steel production development

1500

2500

3500

150 350 550

k
W

h
/t

 s
te

e
l

€/t scrap

Energy Demand of Steel 
production in 2050

H2 import costs <
electric steel route



IEK-3: Techno-Economic Systems Analysis

Example: Aluminum Production

25

Primary 
production

Red Mud

Aluminum 
Oxide 

(Alumina)
Bauxite

Energy

Pig Iron

Bayer process

Basic 
Oxygen 
Furnace

Red mud processing

Circular Economy Measure
► Material efficiency within 

production processes
► Interlinkage between 

sub-industry sectors

Aluminum
Aluminum 

Oxide 
(Alumina)

Hall-Héroult process

Energy

Secondary 
production

Aluminum
Aluminum 
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Electric 
Cracker

Thermal 
Cracker

Example: Basic Chemicals – Primary Material Recycling & Cascading

26

Production of olefins and aromatics and recycling

Olefins & 
Aromatics

Naphtha

Crude oil

Biomass & F-T1

Electrolysis & F-T1

Recyclate

Plastic

Mechanical recycling

Chemical recycling

[1] Fischer-Tropsch process

► 45 Mt CO2 – emissions (1/4 of all emissions in industry sector ~181 Mt CO2)

Circular 
Economy 
Measure

Primary Material Recycling
Chemical recycling
- Separation into pyrolysis oil 

and syngas
- Raw material for new plastics

Cascading
Mechanical recycling
- Raw material for plastics 

of lower quality
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Summary

Circular Economy

“Shift from ‘take, make, dispose’ towards a regenerative approach of resource use” [1]

Material flow analysis is used to assess whether material cycles are closed

Energy System Models

‘Energy systems models are important methods used to generate a range of insight and 

analysis on the supply and demand of energy.’ [2]

Necessary tools to support planning processes of the German ‘Energiewende’

Results

 The German “Energiewende” leads to a “Ressourcenwende”

 Energy and material efficiency play an important role in future energy scenarios

 Circular economy measures are not considered in recent energy system models

[1] https://www.ellenmacarthurfoundation.org/circular-economy/concept

[2] S. Pfenninger, A. Hawkes and J. Keirstead: Energy systems modeling for twenty-first century energy challenges. 

Renewable and Sustainable Energy Reviews, 33, pp. 74-86. 2014.

https://www.ellenmacarthurfoundation.org/circular-economy/concept


THANK YOU FOR YOUR

ATTENTION

28

Felix Kullmann

f.kullmann@fz-juelich.de


	 Die Kreislaufwirtschaft im Energiesystem
	Slide 2 
	The need to reduce greenhouse gas emissions
	Agenda 
	Agenda 
	What is a Circular Economy?
	How to close material loops? 
	Why do we need a Circular Economy? EU Emission Reduction Potential Using a Circular Economy
	How to assess a Circular Economy? Material and Substance Flow Models
	How to assess a Circular Economy? Material and Substance Flow Analysis
	How does a circular economy influence the German energy system?
	Agenda 
	What are Energy System Models?
	Why do we need Energy System Models?
	Slide 15 
	General Approach of an Energy System Model
	Energy System Model 
	Agenda 
	How does the low-carbon energy transition impact resource availability?
	How does the low-carbon energy transition impact resource availability?
	Where are the metals and minerals?
	Agenda 
	Recycling in Germany – Example: Steel 
	First Results – Steel
	Example: Aluminum Production
	Example: Basic Chemicals – Primary Material Recycling & Cascading
	Slide 27 
	Slide 28 

